HOW ENGINEERING
LEADERS CAN USE
THE YOCTO PROJECT
TO SOLVE COMMON
LINUX EMBEDDED
CHALLENGES

THELINUXFOUNDATION TRAININGPUBLICATION

RUDOLF STREIF
DIRECTOR OF EMBEDDED SOLUTIONS

THE LINUX FOUNDATION

OOOOOOOOOO



The Yocto Project
can help you and
your engineering
team get the
next product
development
project off the
ground faster
and be in better
position to finish
it successfully, on
time and within
pudget.

If you are leading an engineering organization, chances are that you either
familiar with or will experience one of these common scenarios:

Scenario 1: You and your team are gathered in a meeting room discussing the base
architecture for your next product development project. Your staff engineers are
proposing a Linux-based system, have already prepared a case study and are now
presenting their evaluation matrix comparing the Linux solution with other potential
approaches including your current solution. The presented data looks convincing,
your team is excited and ready to move forward with Linux and open source.
However, you are concerned about how to make the transition, educate the entire
team, and scale the case study for production.

Scenario 2: Your company has already been shipping a Linux-based product for a
while. Your team has chosen one of the standard desktop or server Linux distributions
to get started quickly and meet the project deadlines. It made a lot of sense at the
time, although you and your engineers were aware that the footprint and functionality
of a full-fledged Linux distribution will potentially be too large for next product
generations. Now the time has arrived and your customers and sales team are asking
for more nimble solutions at a lower price point.

Scenario 3: Your company has been shipping Linux-based products for a while using
a home-grown operating system stack created by a combination of open source tools
and a build system that your team has developed around them. While this solution
worked well in the beginning, your products are now outgrowing the system. They are
requiring more functionality which in-turn is creating an increasingly complex matrix
of dependencies. The time your team spends on maintaining the solution is almost
exponentially taking a larger and larger percentage of the total development time. You
are also looking for a more formalized build environment since your current system
seems to be largely dependent on the skills of whoever is using it, causing various
integration and regression issues.

No matter what your actual situation is, the core set of challenges which keep you
awake at night, and for which you as the engineering leader will have to respond to
adequately, remains pretty much the same. Whether you are considering Linux-based
system development for the first time, or are looking for a better approach after having
learned your initial lessons, chances are that you are facing a multitude of common
challenges:

+ Controlling your Linux operating system stack

* Maintenance

+ Build system and tooling

+ Open source licensing requirements

+ Support

+ Ramping up and scaling your organization

In the following sections, we will explore how the Yocto Project can help you and your
engineering team get the next product development project off the ground faster and
be in better position to finish it successfully, on time and within budget.

HOW ENGINEERING LEADERS CAN USE THE YOCTO PROJECT
TO SOLVE COMMON LINUX EMBEDDED CHALLENGES



The Yocto project
Creates a custom
Linux distribution
for you and
provides you with
a set of common
configurations to
choose from.

The two principal approaches for building a Linux operating system stack
for your product are the following:

+ TOP-DOWN: Leveraging an existing Linux distribution and scaling it according to
product requirements;

+ BOTTOM-UP: Building a custom Linux distribution for your product starting with
the kernel and adding packages as needed;

Both of these options have their advantages and their challenges. Let’s explore.

Top Down

Leveraging an existing Linux distribution that you can download and install on your
target hardware jump starts your development. However, what do you do if the CPU
architecture of your hardware is not supported, peripheral devices have no drivers,
and other problems typically found with embedded systems? Furthermore, how

do you scale the distribution to your needs? All of those distributions come with a
package management system that lets you install and uninstall components. While
they are handling the dependencies, it remains a cumbersome process at the end of
which you will have to create a file system image to install on your target hardware
when going into production.

Bottom-Up

Building a custom Linux distribution from scratch gives you the most control over
your operating system stack including customizing and optimizing the Linux kernel
potentially for multiple architectures, adding device drivers, and more. However, it is
not a trivial task and the tools traditionally available have been limited.

Enter: The Yocto Project

The Yocto Project combines the best of both worlds. While the Yocto Project is not an
(embedded) Linux distribution but creates a custom one for you, what it does provide
is a set of common configurations to choose from. This includes a minimal system
with console login, a system with a basic graphical user interface for mobile devices
and even a system that is compliant with the Linux Standard Base (LSB), to get your
team started quickly. After selecting your initial configuration and your target system,
which can be an emulated target or actual hardware, the Yocto Project fetches all the
necessary source code for the components that comprise the system, builds its own
toolchain and then uses that toolchain to build all the other software components.
Within a couple of hours or less, depending on your build system, the Yocto

Project creates boot loader, kernel and root file system images according to your
configuration that you can either launch in an emulator or transfer to actual hardware.

After the initial build, components included in the system can easily be added and
removed by modifying the build recipes, either by editing them directly or using a
graphical user interface. Recipes are organized in layers that provide separation of
your own recipes from Yocto Project core recipes and board support packages (BSP).
Yocto BSPs follow certain conventions which makes them interchangeable. Simple
configuration using a single setting allows building the same operating system stack
for different target hardware.

HOW ENGINEERING LEADERS CAN USE THE YOCTO PROJECT
TO SOLVE COMMON LINUX EMBEDDED CHALLENGES



The Yocto Project
pays particular
attention to the
Linux kernel and
applies patches
and security
updates to it’s
repositories. This
means that with
every build, you
will receive a fully
patched and
up-to-date kernel.

Linux distribution maintainers spend considerable time and effort looking for patches
and new releases of components included in their distributions. If your team has built
a custom Linux distribution for your products using your own build environment, you
know that with the number of components included in your distribution, this task
becomes exponentially more difficult and time consuming. Not only do you have

to evaluate each patch and new revision of a component, but you will also have to
take packages into consideration that are dependent on that component, as well as
packages it is dependent on.

The Yocto Project facilitates maintenance for your team in two ways:

1. Recipes to build components are permanently updated by the Yocto Project
team for newer versions as well as any relevant patches. Additionally, recipes for
prior versions remain part of the build system and are updated with patches as
necessary.

2. The Yocto Project maintains its own source repository mirrors from which
component sources are retrieved.

The former allows your team to either use the latest version of a component or stick
to a previous version according to your product development cycle requirements. The
latter ensures that even if the upstream project of a component makes changes to
their repositories and eventually chooses to discontinue prior versions, your team will
still be able to retrieve the component source of prior versions.

Furthermore, you can maintain your own source repositories from which your Yocto
Project build environments can draw, which makes your build solution entirely
self-sufficient.

The Yocto Project team pays particular attention to the Linux kernel by maintaining
chosen kernel versions from www.kernel.org inside the Yocto Project repositories

and applying patches and security updates to them. When building the Linux kernel,
the Yocto Project draws from its kernel repositories which means that with every build,
you will receive a fully patched and up-to-date kernel. That even includes patches

to the Linux Foundation’s Long Term Stable Initiative (LTSI) kernel versions that

have not yet been accepted by the mainline kernel. One less thing for your team to
worry about.

HOW ENGINEERING LEADERS CAN USE THE YOCTO PROJECT
TO SOLVE COMMON LINUX EMBEDDED CHALLENGES



The Yocto Project
pbuilds cross and
target toolchains
for you as part

of it’s regular
pbuild process.

The licensing
information the
Yocto Project
automatically
creates when
building your
custom Linux
operating system
stack relieves
your team from
the arduous work
of collecting and
assembling it
manually.

Embedded system software development requires a different set of tools than native
software development, where the build system and target system are mostly identical.
That commonly starts with a cross toolchain and goes all the way to remote debugging
and profiling on target devices. Furthermore, integration with software configuration
management (SCM) systems and quality assurance (QA) needs to be considered.

Many engineering teams end up spending considerable time building their own tools
and/or integrating tools that they have received from hardware and software vendors
into their workflow. The Yocto Project builds cross and target toolchains as part of its
regular build process. If desired, it also builds a remote debugger and performance
profiling tools for the target and automatically includes them with the file system image.
Such tools include: LatencyTOP, PowerTOP, Oprofile, Perf, SystemTap, and Lttng-ust.

The Yocto Project also integrates with virtually any source code management (SCM)
system, including but not limited to: GIT, Subversion, CVS, Perforce, Bazar, etc. So, no
matter what SCM your team is using, the Yocto Project will be able to integrate with it.

A common misconception is that open source licensing is a book sealed with seven
seals. Fortunately, the reality of open source licensing is much more accessible. If you
are shipping a product that includes components licensed through one or more open
source licenses:

» Provide a manifest of the software packages included with your product together
with the licenses they are using;

» Provide the actual license text.

The Yocto Project facilitates open source license management in
multiple ways:

» Every Yocto Project recipe must provide information about the license used by the
component the recipe is building;

» Every Yocto Project recipe must provide an MD5 checksum calculated over the
actual license text;

» Using license information and checksum, the Yocto Project verifies the correctness
of the license, monitors changes to the license text, and creates a license manifest
for every software package included in an image;

+ Future versions of the Yocto Project will also support the Software Package Data
Exchange (SPDX) specification, a standard format for exchanging component
information, associated licenses and copyrights for a software package;

» The Yocto Project does not impose any licensing requirements by itself on the
output it creates.

The licensing information the Yocto Project automatically creates when building your
custom Linux operating system stack relieves your team from the arduous work of
collecting and assembling it manually.

HOW ENGINEERING LEADERS CAN USE THE YOCTO PROJECT
TO SOLVE COMMON LINUX EMBEDDED CHALLENGES



An entire
ecosystem of
organizations
that are using,
depending on,
supporting,
developing,
and providing
resources for the
Yocto Project
has evolved.

The prototypical support mechanisms for open source projects are mailing lists and
wikis. And of course, the Yocto Project provides those as well as a fairly detailed set
of documentation you can find at yoctoproject.org/documentation. However, where

do you turn if your team has a very specific problem? The stereotypical response on
the mailing list is “Just read the source code, it’s all there” but that is far from being

satisfactory.

An entire ecosystem of organizations that are using, depending on, supporting,
developing, and providing resources for the Yocto Project has evolved (yoctoproject.
org/ecosystem). These include semiconductor companies developing BSPs for

their hardware, toolchain companies offering integrated development solutions,
consultancies providing engineering services, and much more. These organizations
are available and ready to support you and your team.

Ramping Up and Scaling Your Organization

Your team can only adopt new methods and tools effectively and efficiently when
combined with the proper education and training. This is where the Linux Foundation’s
course offerings provide your team with the necessary edge to ramp up and scale
more quickly. After attending our course Building Embedded Linux with the Yocto
Project (LF405), your team members will be equipped with a solid understanding of
embedded system development with the Yocto Project, including the Poky reference
build system and BitBake, the use of emulators, building the boot loader, kernel

and file system images for multiple architectures and the creation of board support
packages.

Other Linux Foundation developer training classes include: Embedded Linux
Development (LF411), Developing Linux Device Drivers (LF331), and Linux Kernel
Internals and Debugging (LF320).

For a complete list visit http://training.linuxfoundation.org/linux-courses.

For your convenience, you and your team have several training options to
choose from:

+ CORPORATE ON-SITE LINUX TRAINING: Targeted training, customized to your
teams needs, at your site, a training facility of your choice, or, for certain classes, in
an online classroom.

+ OPEN-ENROLLMENT LINUX TRAINING: Courses held at training facilities
throughout the U.S. and around the world, and, for certain classes, online.

+ TRAINING AT LINUX FOUNDATION EVENTS: Condensed versions of our on-site
and open-enrollment training courses offered in conjunction with our events such
as the Embedded Linux Conference, LinuxCon, Collaboration Summit and the
Enterprise End User Summit.

To learn more about training from the Linux experts for you and your team visit
http://training.linuxfoundation.org.

HOW ENGINEERING LEADERS CAN USE THE YOCTO PROJECT
TO SOLVE COMMON LINUX EMBEDDED CHALLENGES



Rudolf Streif manages The Linux Foundation’s initiatives for embedded solutions working with the community to provide
environments and platforms for embedded Linux systems. Mr. Streif has an extensive background in embedded software
development and bringing products based on Linux to market.

We needed
someone who
could fully
engage with
Ph.D.-level
developers. We
had no doubt
that we'd found
the right
Instructors.

Dana Krokosky, Compunetix

The willingness
of the Linux
Foundation

to customize
the course to
our needs was
the biggest
determining
factor for

choosing them.
Matthew Cheng, Broadcom

The Linux Foundation offers several embedded Linux training courses:

Get advanced Linux training on the key steps to developing an embedded Linux
product. Gain real world experience through extensive hands-on practice with target
devices. Learn More:

Gain a solid understanding of embedded development using the Yocto Project,
including the Poky build process and Bitbake, the use of emulators, building images
for multiple architectures and the creation of board support packages (BSP).

This class will teach you how the Android build system works and how to add a
completely new device definition, how to customise the components that go into the
build, how to obtain and build a Linux kernel with Android additions and how to load it
onto the new target board and configure the boot process.

Distribution-Flexible

The Linux Foundation’s courses are built to be distribution-flexible, allowing
companies or students to easily use any of the big three distribution families: Debian,
Fedora or OpenSUSE. If your company runs one of these Linux distributions and
needs an instructor who can speak deeply on it, we have a Linux expert who knows
your distribution well and is comfortable using it as the basis for any corporate Linux
training. For our open enrollment students who take our online training or classroom
training, our goal is to help them, first and foremost, to become Linux professionals,
rather than focusing on how to use one particular set of tools.

Technically-Advanced

The Linux Foundation’s training program has a clear advantage. As the company that
employs Linux founder Linus Torvalds, we are fortunate in our ability to leverage close
relationships with many of the top members of the Linux community, including Linux
kernel maintainers. This led to the most comprehensive Linux training on the market,
delivered through rigorous five-day courses taught by Linux experts who bring their
real world experiences to every class.

For more information about our Linux training, please visit training.linuxfoundation.org
and contact us today.

HOW ENGINEERING LEADERS CAN USE THE YOCTO PROJECT
TO SOLVE COMMON LINUX EMBEDDED CHALLENGES



