
Containerization
–

An Alternative to
Virtualization in Embedded

Systems

Rudolf J Streif
CTO, ibeeto
September 2019

Technology Corner



Technology Corner

Abstract
Virtualization is the foundation of cloud computing. It enables efficient deployment of 
independent systems across a computing infrastructure sharing resources for better utilization
and eventually cost savings. With more and more powerful system-on-chip (SoC) available to 
embedded developers the idea of combining multiple discrete embedded systems into one 
using virtual machines is the logical consequence. In particular in modern automobiles where 
over 100 electronic control units (ECU) are deployed throughout a vehicle the concept of 
combining them into fewer units promises the reduction of complexity and wiring and the 
realization of cost savings.

While the principle idea and goals of containerization are essentially the same as for 
virtualization, there are significant differences between the two technologies. In a nutshell, 
virtualization is abstraction of hardware while containerization is abstraction of operating 
systems.

This ibeeto Technology Corner article explains the commonality and differences between 
virtualization and containerization and what new possibilities container systems can open for 
embedded systems.

What is Virtualization?
Virtualization is the abstraction of hardware. A software layer, commonly referred to as the 

hypervisor, provides one or more virtual machine in which 
full operating system stacks run, commonly referred to as 
guests. These virtual machines have virtual CPUs, 
memory and devices for exclusive use of the guest 
operating system. Typically, a guest operating system is 
not even aware of that it is running on a virtual machine 
rather than directly on hardware, affectionately dubbed as 
bare metal. The hypervisor is responsible for mapping the 
virtual resources provided to the virtual machines to the 
actual hardware, managing the virtual machine life cycle 
and arbitrating the concurrent use of the hardware by the 
different virtual machines. Hypervisors can be 

distinguished into two categories: Type 1 and Type 2.

Type 1 hypervisors run directly and exclusively on the hardware and provide virtual machine 
environments to the guest operating systems. Type 1 hypervisors are commonly used for 
cloud computing infrastructure such as Amazon’s Elastic Compute Cloud (EC2) and 

Containerization – An Alternative to Virtualization 2



Technology Corner

Microsoft’s Azure Cloud. A Type 1 hypervisor is also what engineers would use for 
virtualization on embedded systems.

Type 2 hypervisors run as an application program inside another operating system, the host, 
and hence share the host resources with other applications running next to them. Type 2 
hypervisors are often used in desktop environments. Examples are Oracle VirtualBox or 
VMWare.

The virtual CPUs provided by the hypervisor to the guest operating systems is the same 
architecture and instruction set than that of the underlying hardware CPU. The concept of 
providing virtual CPUs with a different architecture and/or instruction set is referred to as 
emulation. Embedded software developers commonly use emulators to test their programs as
the CPU architecture of the target system, the system the software is developed for, in many 
cases is different from the CPU architecture of the development or host system the developer 
is doing the work on. An example is a developer writing an application on a PC (x86 or x86-64
architecture) for a mobile phone (ARM architecture). The most significant drawback of 
emulation is performance: in most cases an application runs slower in an emulator than on 
hardware (there are exceptions to that as it all depends on what hardware is used). Therefore
emulation is not commonly used in production systems.

In theory virtualization looks like a straight-forward concept. The challenges are of course in 
the details of correctly and transparently virtualizing the hardware for the guest operating 
systems. This is well-understood for any hardware that is commonly used for cloud computing
infrastructure, that is, server-class computers with x86-64 CPUs, RAM, hard drives and 
network interfaces. For these types of devices virtual drivers are standard for any hypervisor. 
It becomes much more challenging for embedded devices that have no standard hardware 
mold. Such devices have a plethora of different I/O interfaces such as I2C, SPI, CAN, etc. as 
well as specific hardware such as cellular modems, GPS receivers, DSRC radios to name a 
few common to the automotive industry. If a virtual device driver is not available then there is 
no other solution but to allow a single guest to directly access the hardware through its own 
drivers. Then of course, there is no sharing of the hardware among the guests.

Because virtualization is hardware abstraction, different guest operating systems can run 
inside of separate virtual machines on top of the same hypervisor and the same hardware at 
the same time. For example, Windows, Linux and other operating systems can run inside of 
virtual machines managed by VirtualBox running on top of a Linux host at the same time.

What is Containerization?
The concept of containerization is based on the separation of operating system kernel and 
application software (programs and libraries, also commonly referred to as user-space). If you

Containerization – An Alternative to Virtualization 3



Technology Corner

look at Linux distributions, what makes one distribution unique and distinguishable from 
another is how the user-space is assembled. As long as kernel and user-space are 
compatible you can for example run an Ubuntu user-space on top of an Archlinux kernel and 
vice-versa. That is essentially what containers are doing in a nutshell.

Similar to the hypervisor, a container
manager is responsible for managing the
lifecycle of the containers. The container
manager runs on top of an operating system
which provides the kernel and the core
system infrastructure. However, the container
manager is not a shim between the operating
system and the containers. It does not
provide the runtime environment for the
containers and also does not manage the
system resources for concurrently running
containers. That is all done by the kernel of
the underlying operating system. Once a
container is started by the container manager, the container directly interacts with the 
operating system kernel. That is a fundamental difference to virtualization where the 
hypervisor is essentially a software layer between the virtual machines and the underlying OS
kernel.

Another essential difference between virtualization and containerization is that the former are 
monolithic while the latter can be modular. While of course an entire user-space stack such as
Ubuntu with all necessary libraries and applications can be run as a single container, it is 
much more flexible to actually let the container manager build a container stack. Think of a 
container stack as LegosTM: a series of smaller containers that are assembled to provide the 
required functionality. For example, a web server could be assembled from a base container 
with the core libraries, a database container, and a finally a container with the actual web 
server. The container manager assembles the runtime container stack instance from 
container images. The same container images can be reused concurrently thus saving 
storage on the host system. A configuration file, commonly referred to as a container 
playbook or simply playbook, tells the container manager from what containers to assemble 
the runtime instance and how the containers are connected with each other. This is a very 
powerful concept, as simply by changing the playbook entirely different configurations can 
dynamically be created. That is not possible with virtual machines (of course, you could run 
containers inside of a virtual machine).

Containerization – An Alternative to Virtualization 4



Technology Corner

One thing you cannot do with containerization is to run different operating systems. If the 
underlying kernel is Linux then the container stacks are Linux user-space (of course, you 
could run a hypervisor inside of a container).

Why bother?
Now that we explained virtualization and containerization, the question is why and when to 
use the one or the other, and, more fundamentally, do we need them at all in embedded 
systems? The following bullet points are commonly cited when talking virtualization and 
containerization. We are not claiming that this list is exhaustive, your application might have 
other and/or additional requirements.

• Resource Utilization and Sharing – Both virtualization and containerization promise 
to provide better resource utilization as they allow multiple systems to be combined 
onto one hardware. Since not all applications do not make use of resources all the time
this would lead to better utilization and eventually less cost for hardware. However, this
is also the very hallmark of a multi-processing and multi-tasking operating system. We 
could just run the applications directly on top of a multi-processing and multi-tasking 
operating system and achieve a similar result without the overhead and complexity of 
virtualization or containerization. As a matter of fact, on an embedded system the use 
of virtualization could lead to less efficient memory usage as these systems typically 
cannot use virtual memory that moves unused memory blocks to storage and loads 
them again when needed. Consequently, a worst-case fixed amount of memory needs 
to be allocated to the virtual machines.

• Isolation – Virtualization and containerization provide isolation from other processes 
and applications. However, once again, the same is true for multi-tasking operating 
systems. They isolate processes into their own space using virtual memory pages etc. 
In effect, these are the same techniques a hypervisor is using to isolate the virtual 
machines.

• Security – Albeit commonly quoted as a reason for deploying virtualization or 
containerization, neither one of them are security concepts. If a virtual machine or a 
container and the applications running inside them are not hardened for security, 
virtualization and containerization make no difference for vulnerability. They may limit 
the effect of a vulnerability to the particular virtual machine or container thus possibly 
not compromising the entire system but that is not a given either. Since neither virtual 
machines or containers are islands and are typically connected to each other or other 
systems through a network or other means, viruses, malware etc. can also spread (this
is no different to PC networks in organizations where a virus on a single infected 
system can easily spread across the entire organization).

Containerization – An Alternative to Virtualization 5



Technology Corner

• Different Runtime Environments – This is where virtualization and containerization 
have a clear advantage of running applications on the same operating system. Both 
can provide entirely different runtime environments with different libraries, configuration
etc. As already mentioned, virtualization can even provide entirely different operating 
systems.

• System Lifecycle Management (SLM) – System lifecycle management is easiest with
applications running on a single operating system. Applications can be started and 
stopped at will, the entire system can be shut down or reset, or put into a power saving
state such as suspend-to-RAM. With containerization SLM is not that much more 
complicated since container life cycles are handled by the container manager. And 
since the processes running inside a container are still simply processes running on 
top of the host OS suspend-to-RAM is essentially implicit. With virtualization SLM 
becomes much more complex as the OS running inside of a virtual machine has its 
own life cycle management. While virtual machines can be suspended to RAM as any 
process, device drivers of a guest OS directly handling hardware and interrupts can 
have unintended side effects on the ability of suspending an entire system to RAM.

• System Startup and Shutdown Performance – This is always a hot topic for any 
embedded device. We are used to our computers, and even our smart phones, to take 
their sweet time to boot up and shutdown, but our expectations from TVs, appliances 
etc. and, for that matter cars, are much different . These systems, we expect to be 
ready and operational instantaneously. For some applications that is already a problem
with an OS such as Linux. Virtualization and containerization add additional time for 
the virtual machines and the containers to be ready respectively. Virtualization has a 
clear disadvantage as the virtual machine has to start up an entire operating system 
before being able to run any applications. Launching containers is much faster.

• Software Updates and Software-over-the-Air (SOTA) – Software updates for 
common desktop and server systems are standard. Individual software packages and 
even the operating system kernel to entire system upgrades can be performed mostly 
automatically. They have also become very stable and in case of a failure a fallback to 
the previous system is generally possible. In cases of a catastrophic failure resulting in 
an inoperable system, it can be restored from scratch albeit eventually at the expense 
of loss of data (hence, the backup warning before the process begins). Even for 
today’s smart phones software updates over the air are commonplace and stable. 

Virtualization provides different avenues for software updates: individual software 
packages inside the virtual machine can be updated or the entire virtual machine 
image can be updated on the host (of course if applications inside the virtual machine 

Containerization – An Alternative to Virtualization 6



Technology Corner

store data inside the virtual machine such data would be lost unless it is stored 
elsewhere). If there is sufficient storage the previous virtual machine image can be 
retained as a backup in case of a failure.

Containerization offers an entirely new angle to software updates. If you have worked 
with Ansible, Docker, Kubernetes and other container managers before you know that 
when the container manager initializes a container stack according to a playbook it first
checks if it can find the right containers with the correct versions in its local repository. 
If a container is missing it can download it from a remote repository. This is a powerful 
concept that can be used for software updates: if a software update for a container 
stack is necessary a new playbook can be sent to the device. When the container 
manager starts the container stack the next time, it uses the new playbook. Since the 
new playbook contains updated containers not available in the local repository the 
container manager downloads it them from the remote repository before launching the 
container. If there is a problem with the new container stack, the container manager 
can simply fall back to the previous playbook. Updating the base operating system and
the container manager, however, still requires an image upgrade, but that image is 
much smaller than an entire system.

Summary
If you are looking at deploying virtualization for your next embedded project, you should also 
have a closer look at containerization. Unless you have a requirement for an operating 
system that does not support containerization or you need to run different operating systems 
in virtual machines, containerization can provide an excellent alternative with less technical 
challenges for resource sharing and lifecycle management.

Contact Information
We would like to hear from you! If you have feedback to this ibeeto Technology Corner article 
please contact us:

ibeeto
Rudolf J Streif
rudolf.streif@ibeeto.com
+1.855.442.3386

Containerization – An Alternative to Virtualization 7

mailto:rudolf.streif@ibeeto.com


Technology Corner

ibeeto is a hardware and software consulting firm providing development and engineering 
services as well as a variety of training courses. We are happy to assist you with getting your 
next embedded project off the ground.

Containerization – An Alternative to Virtualization 8


	Abstract
	What is Virtualization?
	What is Containerization?
	Why bother?
	Summary
	Contact Information

