
Microcontroller versus
System-on-Chip in

Embedded System Designs

Rudolf J Streif
CTO, ibeeto
September 2019

Technology Corner

Technology Corner

Abstract
Microcontrollers (µC) have been dominating embedded system designs for decades. With 8,
16, and 32 bit variants and many different on-chip peripherals and memory configurations
embedded system designers have many options to choose from. Semiconductor vendors
often provide development tools, software libraries and code examples for common problems
free of charge and free of licensing royalties, making it easy and straight forward to get an
embedded project off the ground quickly.

However within the last couple of years, Systems-on-Chip (SoC) started “infringing” on the
µC turf for embedded designs. SoC commonly provide more processing power, multiple CPU
cores, support for high-level operating systems, access to mass storage devices and more.
Affordable embedded development boards such as Beaglebone, Beagleboard, Minnowboard,
Raspberry Pi and many others are sparking embedded engineers’, hardware and software
developers alike, imaginations. Why not use an SoC for our next design?

Whether you should use a µC or SoC for your next design for the most part depends on your
application. However, there are some additional considerations you should take into account
before making your decision.

Hardware Design
If it is a µC or a SoC you ultimately have to integrate it into your hardware design. Electrical
and mechanical characteristics of a µC are much different from those of SoC. Let’s talk about
some of the more demanding aspects.

Clock Speed

The typical µC clock speed is in the low to high tens of MHz and therefore orders of
magnitude lower than the GHz clocks that are common for SoC. Of course, higher clock
speeds mean faster execution but they also put higher much more demand on the electrical
design of the board to provide the necessary clock stability and also avoid radio frequency
emissions from the oscillator possibly causing interference.

Processing Power

With higher clock speeds come shorter cycle time and therefore more processing power. True
parallel processing can only be enabled with multiple processing cores. While there are
several multi-core microcontrollers, single-core designs are dominant. For SoCs it is pretty
much the other way around, multi-core (or at least multi-threading) SoCs are the norm while
single-core is the exception. Even the SoC used on the $35 Raspberry Pi 3B has four cores.

Microcontroller versus System-on-Chip 2

Technology Corner

An alternative to more processing power on an embedded device is cloud processing of data.
The embedded device only performs data collection and eventually data pre-processing tasks
and then sends the data to a cloud server for more compute-intensive processing. The server
then sends back instructions to the embedded device based on the processing result. That
can save on processing power and eventually power consumption of the embedded device,
but of course, at the expense that the device has to be permanently connected. A common
example are popular voice assistants that send audio streams to cloud servers for language
processing and receive back the command to be executed.

Power Consumption

When it comes to power consumption less is always more: less processing power, less
peripherals, less RAM, etc. SoCs provide a lot of functionality. For instance, if your embedded
device does not have a screen then an on-chip GPU does not add any value but might
consume power if you cannot turn it off. Microcontrollers are in general more power efficient
than SoCs. If power consumption is of importance for your embedded application a
microcontroller might be the better choice given that it can perform all of the tasks.

RAM

A standard µC has RAM and flash memory on-chip while SoCs require external RAM. On-
chip microcontroller RAM is typically is static RAM and limited to a couple of megabytes which
sometimes can be increased by connecting more static RAM externally. Since SoCs are
derived from general purpose CPUs they use standard dynamic RAM chips which can
provide many gigabytes of capacity. While dynamic RAM is cheaper than static RAM, it
requires a memory controller for addressing and refreshing the RAM cells. Generally, the
RAM controller is part of the SoC. Since RAM uses parallel address and data lines, it is
critical that hardware designers pay careful attention to the board layout when connecting
external RAM. That is in particular true for RAM with high data rates. Connecting traces on
the PCB have to be at similar lengths to avoid timing problems and free from interference.
Memory controllers may require tuning tables to adjust for signal timing on different traces.

Peripheral Buses

Peripheral buses on µC include low-speed serial buses such as I2C and SPI. Microcontrollers
designed for industrial and automotive applications often also include CAN (Controller Area
Network) and LIN (Local Interconnect Network). Some microcontrollers may also have USB
interfaces, albeit that is less common. SoCs also provide the low-speed serial interfaces and
very much always have USB ports. For high-speed peripheral devices they offer either PCIe
or increasingly SerDes (Serializer-Deserializer) interfaces with multiple configurable lanes to
which disk controllers (SATA), Ethernet bridges and other devices requiring higher data rates

Microcontroller versus System-on-Chip 3

Technology Corner

can be connected. Higher data rates once again mean higher demands on the board design,
albeit serial interfaces are less critical than parallel ones.

Power Management

Many SoC require different voltages for the various components such as CPU cores, memory
controllers and peripherals to operate correctly. It is not uncommon that a chip needs to fed
1.8V, 3.3V and 5V at different power levels that sometimes need to be applied using specific
power-up and power-down sequences for the SoC to operate correctly. The more complex
SoC have companion chips, so called Power Management IC (PMIC), which simplify
providing the correct power configuration.

Packaging

Almost any microcontroller is available in flat-pack packaging with connecting leads on the
side of the device package. The number of connections ranges from the low tens to up to
300+ (302 pin QFP (Quad Flat Package). SoCs on the other side often have much higher pin
count and require BGA (Ball Grid Array) and other high-density packaging. Such packaging
has much higher demand on board layout and design often requiring six or more layers with
vertical interconnects (VIA).

Hardware design for SoC can often be much more demanding and therefore time consuming
than for µC. However, using a System-on-Module (SoM) may provide the advantages of both
worlds: SoC performance with µC hardware design simplicity. SoM are complete compute
modules with SoC, power management, RAM, peripheral devices such as Ethernet, SATA,
etc. They are designed to be integrated with a motherboard through a standardized connector
such as COM Express, Qseven, SMARC, etc. Using an SoM lowers hardware design
complexity with the added benefit of interchangeability. Simply by shipping a different SoM
with your product you can provide different functionality and performance levels without
having to change your motherboard design.

Temptation might be great to use a development board such as a Raspberry Pi for production
designs. After all they are ready to go with common peripherals and software support at a low
cost. We strongly advise against it. These boards are not intended for production use. And as
development boards they also do not have (nor need) proper certification such as FCC, CE
etc. Sometimes designers of development boards also implement watchdog timers forcing a
reset after a period of continuous operating time to discourage production use.

Microcontroller versus System-on-Chip 4

Technology Corner

Software Design
Much can be said about the differences in software design for microcontroller and SoC. We
are focusing on a few major aspects.

Architecture and Instruction Set

Nowadays, unless you are a chip designer or assembly programmer, you do not have to
worry too much about architecture and instruction set anymore as software development tools
have come a long way essentially abstracting machine details. However, it is helpful to
understand the basic concepts as they apply to microcontrollers and SoCs and at least to
some extend determine parts of the overall software design.

Microcontrollers commonly employ what is known as Harvard architecture. Harvard
architecture separates instruction and data flows and uses separate memory for code and
data. In most cases microcontroller code is stored in non-volatile memory that allows in-place
execution such as ROM, EPROM or NOR flash. The CPU directly fetches the instructions
from the non-volatile memory and executes them.

On the other hand, SoC typically use von Neumann architecture. This architecture is based
on the stored-program computer concept where code and data essentially share the same
memory. Programs are loaded from storage media into RAM before their code can be
executed. A memory management unit (MMU) separates code from data and protects code
and data regions in RAM form access by other programs. While von Neumann architecture is
more flexible it also adds complexity for loading and MMU setup.

As far as instructions sets are concerned, microcontroller vendors typically implement their
own for their products and provide development tools such as compilers and debuggers
which are often also embedded into an Integrated Development Environment (IDE). An
example is Atmel Studio for the Atmel/Microchip AVR and SAM devices which are used by the
popular Arduino boards.

SoC instruction sets follow the mainstream architectures for general purpose CPUs: ARM,
ARM64, PowerPC, x86, and x86-64. Virtually all SoC vendors provide board support
packages (BSP) for Linux and often also for Microsoft Windows and QNX. For embedded
Linux development the Yocto Project (www.yoctoproject.org) and OpenEmbedded
(www.openembedded.org) have established themselves as a de-facto standard, superseding
Buildroot and Crosstools-NG. Additionally, Debian Linux package feeds are gaining interest
among embedded Linux developers for building Linux operating system stacks.

Microcontroller versus System-on-Chip 5

http://www.openembedded.org/
http://www.yoctoproject.org/

Technology Corner

Operating Systems

In short, for the typical microcontroller application you probably do not need an operating
system. Your program can run right away after some basic initialization of the hardware. Due
to the linear architecture and a lack of a memory management unit, concurrency is pretty
much limited to interrupt service routines next to the main loop or your program. Software
libraries, provided by the µC vendor, that you can easily integrate into your own programs
simplify dealing with peripherals.

To use the full potential of a SoC you most likely will want to use an operating system. That
will also require a boot loader to set up the core hardware functionality necessary for the
operating system kernel to execute. Modern SoC commonly use a multi-stage boot process
starting with a first stage running from internal ROM or flash memory. Subsequent stages can
then be loaded from various boot media, often also including USB devices next to disk drives
and others. Once the operating system kernel is loaded and executing, it takes over control of
the hardware. The two main jobs of the operating system are to manage the system
resources and to provide an interface for applications to utilize the system resources
(Application Binary Interface (ABI)).

Since you probably won’t be developing an operating system yourself, the amount of third-
party code used in your system, and thus system complexity, will increase by orders of
magnitude when using a SoC over a microcontroller. Given, you will get much more
functionality with an SoC but that is only of value if you are actually going to use it for your
application.

Startup/Boot Time

This is where the microcontroller truly outshines the SoC. Embedded systems with SoCs
running high-level operating systems can easily take 30 seconds or more to boot. Just look at
your smartphone. Since the microcontroller boot process is much simpler, startup times of
less than 10 ms can be achieved. In all fairness of course, systems with SoC often have a
plethora or peripheral devices that need to be initialized during the boot process which can be
time consuming.

Optimizing the boot process of a device with an SoC is possible but takes a lot of experience
and time. You clearly need to understand hardware and software dependencies to squeeze
the last bit out of the system startup time. High-level operating systems such as Linux are
commonly built to support different hardware configurations with the same kernel. That
potentially means hardware drivers being loaded and hardware being probed that does not
exist. Removing those driver is a first step.

Microcontroller versus System-on-Chip 6

Technology Corner

System Integration or Own Code versus Third-party Code

We think that the Pareto rule pretty much applies to own code versus third-party code: 80/20
own code versus third-party code for a microcontroller project and 20/80 for a SoC project.
This is where organizations accustomed to designing microcontroller-based systems struggle
the most when switching to SoC: software development all of a sudden becomes more of an
integration task than a coding task. Furthermore, these organizations are used to be in full
control over all of the source code that eventually comprises their device’s software stack.
Hence the majority of them look to Linux and open source as the solution. Unfortunately, it is
a common oversight that the free in free software refers to freedom of use not to free of cost.
Yes, you do not have to buy the software but you have to make substantial investments into
your organization’s software engineering capabilities to fully take advantage of open source
software.

Considering the size of your team and the amount of code produced during a regular work
day, you might still be getting away with the old paradigm of nightly builds and weekly test
cycles. That will definitely not be sufficient anymore when using Linux and open source
software but even if you are using a commercial OS or a commercial distribution of Linux you
will eventually have to switch to continuous integration and test or ultimately Development
Operations (DevOps). Think of it as if your software development team all of a sudden has
grown to thousands of developers distributed around the globe. Each day there are tens of
thousands of new lines of code written, new functionality integrated, bugs fixed, Common
Vulnerabilities and Exposures (CVE) resolved and more.

The common head-in-the-sand approach is to freeze the third-party software to a known and
working state and only integrate your own software on top of it. However, that only gets you
that far and eventually you will have to upgrade the third-party software for your device to
newer versions. If you waited too long that easily becomes a major upheaval.

Consequently the demand for long term support is only too understandable. For the Linux
kernel there is the Long Term Support Initiative (LTSI) managed by the Linux Foundation
(https://ltsi.linuxfoundation.org). But the Linux kernel is only one of the about 1,000 software
packages that make up a typical Linux operating system stack. What about those?

Even if there were long term support for all of those software packages it would only postpone
the problem to a future point in time. Yes, ideally you would want long term support for the
expected life of your product. But how long that actually is depends on the product. For a
consumer electronics product that might be two or three years; for an industrial control it
might be 7 to 10 years; for a car 10 to 15 years.

Continuous integration and DevOps cannot entirely solve the problem either. In particular it
cannot solve the obsolescence problem at which point your hardware in the field simply will

Microcontroller versus System-on-Chip 7

https://ltsi.linuxfoundation.org/

Technology Corner

not be able to run the latest software anymore. However, it can move the mark at least for
some time. If you continuously integrate software updates during the development of your
product and test it then once you start shipping your product, you are shipping it with the
latest software and not with software that has already been outdated during the time of
development. If you continue the practice after the product started shipping you can provide
current software updates to your existing customers while preparing for the next release of
your product. Many manufactures of mobile phones are already practicing this process: until
hardware obsolescence is preventing further updates they are delivering new software
versions to their customers. A side effect of this service is that it does not go unnoticed with
customers and thus supports brand loyalty.

Security

Neither microcontroller nor SoC are inherently secure or not secure. It is the software running
on them that exposes vulnerabilities that can be exploited for attacks. It is standard for current
devices to have Internet connectivity for data collection and remote access. Connectivity adds
another dimension to vulnerability as attacks can easily be scaled across thousands if not
millions of devices.

Nowadays, embedded developers have to design their devices with security in mind. Even if
your device does not have network connectivity chances are that somebody might use a
serial-to-Ethernet converter to attach your device to a network through the serial port that you
only intended for system maintenance.

The more software you have running on a device the greater the attack surface might
become. Embedded developers love remote terminals, network file systems, network boot
capabilities etc. as they can greatly accelerate round-trip development. Operating systems
such as Linux might automatically run terminal services on a serial port leaving an unnoticed
backdoor. Network services are often started listening for incoming connections on common
network ports. If they are not needed it is best to remove them or at least disable them. If they
are needed follow best practices to secure them.

However, it does not stop there. Eventually your device needs to be provisioned and tested as
part of the production process. Your contract manufacturer might tell you that they need
certain capabilities and remote access built into the system software to run their tests. Ideally,
such functionality should be removed once the production tests have been completed.

Of course much more can be said about security and hardening your device. If you use a SoC
with an operating system make sure that you fully understand the entire stack and what the
software components do to assess if you actually need them. Then tailor your system
accordingly. Less is more when it comes to security.

Microcontroller versus System-on-Chip 8

Technology Corner

Development Environments

With a high-level operating system typically comes the support for many different
development environments and programming languages. You often have the choice of
multiple different Integrated Development Environments (IDE) such as Eclipse
(https://www.eclipse.org) and of course virtually any programming language: C/C++, Go,
Java, Python, Rust and many more. Choices are much more limited for microcontrollers. C is
pretty much the de-facto standard but it is also customary that microcontroller provide IDEs
with built-in compiler, linker, assembler, debugger, target deployment, etc.

For team leads and project managers finding developers with the right skill set is of utmost
importance. There is a good reason for semiconductor companies providing and supporting
the development of inexpensive development boards together with tools and tutorials.
Embedded system development used to require expensive development tools such as in-
circuit emulators, EPROM programmers and erasers, custom compilers and more. And to use
them properly training classes often were necessary too. Readily available hardware at low
cost and tools at no cost with online documentation and tutorials have changed the landscape
enlarging the pool of developers with the right skills.

There are plenty of options to choose from when deciding on a CPU for an embedded project.
Narrowing down the choices through diligent analysis of the required functionality is
mandatory. The final decision might always be a compromise but knowing your options and
understanding the trade-offs upfront avoids delivery delays, redesign efforts, waived
functionality and more down the road of product development.

Contact Information
We would like to hear from you! If you have feedback to this ibeeto Technology Corner article
please contact us:

ibeeto
Rudolf J Streif
rudolf.streif@ibeeto.com
+1.855.442.3386

Microcontroller versus System-on-Chip 9

mailto:rudolf.streif@ibeeto.com
https://www.eclipse.org/

Technology Corner

ibeeto is a hardware and software consulting firm providing development and engineering
services as well as a variety of training courses. We are happy to assist you with getting your
next embedded project off the ground.

Microcontroller versus System-on-Chip 10

	Abstract
	Hardware Design
	Clock Speed
	Processing Power
	Power Consumption
	RAM
	Peripheral Buses
	Power Management
	Packaging

	Software Design
	Architecture and Instruction Set
	Operating Systems
	Startup/Boot Time
	System Integration or Own Code versus Third-party Code
	Security
	Development Environments

	Contact Information

